GAS-LIQUID CHROMATOGRAPHIC STUDIES OF REACTIONS AND STRUCTURAL RELATIONSHIPS OF STEROIDS

PART III. $11 \alpha-H Y D R O X Y S T E R O I D S ~ O F ~ T H E ~ A N D R O S T A N E ~ A N D ~ P R E G-~$ NANE SERIES*

FRANTZ A. VANDENHEUVEL

Animal Research Institute, Research Branch, Canada Department of Agriculture, Ottawa, Ontario KIA OC6 (Canada)

(Received September 13th, 1974)

SUMMARY

Qualitative and quantitative effects of classical reactions on steroids observed by gas-liquid chromatography (GLC) under standardized conditions, including the double internal-standard technique, are reported. Simple procedures applicable to nanogram amounts of reactants which afford excellent yields of the major products are described. Reactions studied include the Wolff-Kishner removal of keto groups, their conversion into hydroxyl groups with sodium-ethanol or sodium borohydride and into dioxolone derivatives with ethylene glycol; the conversion of hydroxyl into keto groups with chromium trioxide and to trimethylsilyl (TMS) ethers by hexamethyldisilazane; the hydrolysis of dioxolone and TMS derivatives by H^{+}. Gas-liquid chromatograms of reaction mixtures of single- and multistep reactions readily provide information on the effects on the 11α-hydroxy and other functional groups at positions 3 and 17 (androstane series) and positions 3 and 20 (pregnane series), and the retention times of many steroids unavailable from commercial or other sources. GLC data analysis provides relationships between steroid structure and retention time from which methods for the computation of retention times and for steroid identification are designed. The accuracy of the calculation methods is demonstrated.

INTRODUCTION

A systematic survey of steroidal hormones, precursors and metabolites in domestic animals undertaken in this laboratory required access to relevant steroid standards for the purpose of identification. As this study included poorly explored domains of steroid metabolism, the choice of standards was given the widest possible scope. Chemical and chromatographic properties of standards obtained by synthesis or from commercial and other sources were systematically observed under highly

[^0]standardized, reproducible conditions, and their value in steroid characterization was thoroughly assessed. Such properties have already been reported in Parts I and II of the present series for steroids of the androstane series substituted at the 3,11 and 17 positions ${ }^{1}$, and for steroids of the pregnane series substituted at the 3,11 and 20 positions ${ }^{2}$. The 232 relevant steroids, which did not include the 11α-hydroxy species, comprised numerous hormones and known metabolites. In contrast, the 77 corresponding 11α-hydroxysteroids reported in the present paper include relatively few recognized metabolic intermediates, for example, 11α-hydroxyprogesterone. Although such compounds were readily obtainable by alkali metal reduction of 11-oxosteroids ${ }^{3,4}$, reported preparations were few, and available standards even less numerous. In syntheses described below, the required standards were obtained by sodiumethanol reduction (RN) of 11 -oxosteroids, along with much information on their chemical properties and the possible use of the reaction for the characterization of 11 -substituted steroids. Gas-liquid chromatography (GLC) of the products showed that G_{R}-oddity, as defined in ref. 1 , was unusually extensive in these compounds, and that, in contrast to other steroid species, it was positive in most cases. This paper will show that, in spite of extraordinary GLC properties, 11α-hydroxysteroids form closely related groups ${ }^{1}$. Hence, strong additional evidence will be provided for the general applicability of steroid structure-retention time relationships ${ }^{1}$;whereby accurate retention times can be predicted, and for the reliability of the calculated values in steroid identification ${ }^{1,2}$.

Definitions of abbreviations and symbols used below will be found in Part I of the present series of articles ${ }^{1}$.

EXPERIMENTAL

Reactions

Most of the syntheses described in Diagrams 1-9 were carried out by first applying the RN procedure described below to dioxolone (DO) derivatives featuring a free (11) group. The syntheses of these DO derivatives have been described ${ }^{1,2}$. Procedures used in subsequent hydrolysis of DO derivatives (HY), reduction of keto groups by sodium borohydride (RD), Wolff-Kishner removal of keto groups (WK), and chromium trioxide oxidation of hydroxyl groups (OX) have been described in detail ${ }^{1}$.
$R N$. From 0 to 1 mg of steroid placed in a $15-\mathrm{ml} \overline{\$} 10$ centrifuge tube was dissolved in $250 \mu \mathrm{l}$ of absolute ethanol. After filling the tube with nitrogen, a small sliver of clean sodium was added, as described below, and the reaction allowed to proceed for a few minutes until hydrogen evolution had ceased. Unreacted sodium, if any, was dissolved by adding $250 \mu \mathrm{l}$ of ethanol. The contents were carefully neutralized with $1 N$ acetic acid measured from a burette (blue spot on wet Congo red paper), and extracted three times with 1 ml of chloroform. The total extract, washed with 500 ml of water, was evaporated to dryness under a stream of nitrogen.

General extraction and washing procedures described in ref. 1 were used. Clean sodium slivers were obtained from a small block of sodium wedged at the bottom of a $100-\mathrm{ml}$ weighing bottle, washed several times with pure hexane, and kept in hexane, under nitrogen, in the stoppered bottle until used. After scratching a small area of the block surface clear of oxide with a scalpel, a sliver was removed
by scraping with the tip of a $0.5-\mathrm{mm}$-diameter stainless-steel wire to which it stuck and immediately transferred to the reaction tube. The size of this sliver, estimated from previous tests, corresponded to at least 5 ml of acid.

GLC and thin-layer chromatography (TLC)

Both methods were used as previously described ${ }^{1.2}$. TLC was used extensively as a purification step particularly in the synthesis of pregnane derivatives for reasons already discussed ${ }^{2}$. Trimethylsilyl (TMS) derivatization of all 11α-hydroxysteroids was carried out in microtubes filled with nitrogen and heated to $30-35^{\circ}$ to ensure complete reaction (cf. Discussion).

THE DATA

Table I and Diagrams 1-9 describe syntheses of 11 α-hydrosteroids from (11)featuring compounds, the sources of which are indicated. Percentages of main products only are given for successive reactions indicated to the left or middle of the diagrams by the appropriate symbols. Retention times $t^{\prime}{ }_{N R}$ of TMS derivatives are shown preceded by D followed by the time in $10^{-2} \times \min$ and preceded by D, N when this time was the same whether the reaction mixture was derivatized or not. The retention time is followed by the corresponding L_{R} value in parentheses,

$$
L_{R}=10^{3} \cdot \log t_{N R}^{\prime} \quad(\text { eqq. } 6 \text { in ref. } 1)
$$

TABEL I
EFFECT OF NASCENT HYDROGEN GENERATED BY SODIUM DISSOLVING IN ETHANOL (RN) ON UNSATURATED STEROIDS OF THE ANDROSTANE SERIES

Starting material		Main product(s)*	
Abbreviation	Source and GLC properties	Abbreviătion	GLC properties
14A3P17 ${ }^{\text {P }}$	Ref. 1, Table X	cf. text	
-15A3/17 ${ }^{\text {a }}$	Ref. 1, Table X	$\triangle 5 A 3 \beta 17 \%$	Ref. 1, Table \times
$5 \beta \mathrm{~A} \mid 7 \beta(3)$	Ref. 1, Table X	5 A $^{\text {a } \alpha 17 \beta}$	Ref. 1, Table X
$5 \alpha A 17 \beta(3)$	Ref. 1, Table X	S α A 3 B17 ${ }^{\text {a }}$	Ref. 1, Table X
44A17 β (3)	Ref. 1, Table X	S A A $3 \beta 17 \beta$: of. text	
$5 \alpha A 3 \alpha(17)$	Ref. 1, Table.IX		Ref. 1, Table X
$5 \mu \mathrm{~A}(3,17)$	Ref. 1, Table IX	$5 \alpha A 3 \beta 17 \beta$	Ref. 1, Table X
$\triangle 14 A(3,17)$	Ref. 1, Table IX	$5 \alpha A 3 \beta 17 \beta$: cf. text	
$5 \beta \mathrm{~A}(1 i)$	Ref. 1, Table III		This article, Table IV
$5 \times \mathrm{A}(11)$	Ref. 1, Table III	SaA11a	This article, Table IV
$5 a \mathrm{~A} 3 \boldsymbol{a}(11)$	Ref. I, Table III	5aA3a1t\%	This article. Table IV
5 β A3a(11)	Ref. 1, Table III	5 β A3 3 11 μ	This article, Table IV
$5 \alpha \mathrm{~A} 3$ (11)	Ref. 1, Table III	5 α A3 $\beta 11 \%$	This article, Table IV
$\triangle 5 A 3 \beta(11)$	WK reduction of 45A3p(11,17)	A5A3 $\beta 11 \alpha$	This article, Table IV
S β A $(11,17)$	Ref. 1, Table V		This article, Table VI
$5 \alpha \mathrm{~A}(11,17)$	Ref. 1, Table V	SaAllal7 ${ }^{\text {a }}$	This article, Table VI
5 β A3a(11,17)	Ref. 1, Table V		This article, Table VI
$5 \alpha \mathrm{~A} 3 \beta(11,17)$	Ref. 1, Table V	$5 \alpha \mathrm{~A} 3 \beta 11 \alpha 17 \beta$	This article, Table VI
$\triangle 5 A 3 \beta(11,17)$	SRC	ASA3 $111 \alpha 17 \beta$	This acticle, Table VI

[^1]| A | B |
| :---: | :---: |
| 58A(11)DO(17)* | S α A(11)DO(17)** |
| N,D 315 (2500) | N,D 349 (2543) |
| | |
| 90 | 89 |
| 5阝All α DO(17) | SaAl1aDO(17) |
| D 350 (2544) | D 363 (2560) |
| ADO(17) $=173 * *$ | $\angle \mathrm{CO}(17)=178 * *$ |
| 90 | 88 |
| SpAll ${ }^{\text {(17) }}$ | SaA11 ${ }^{\text {(17) }}$ |
| D 235 (2371) | D 241 (2382) |
| 90 | 85 |
| SPA11a17 | 5 A $^{\text {1 } 11 \alpha 17 \beta}$ |
| D 265 (2423) | D 273 (2436) |

Diagram 1. Synthesis of $5 \beta A 11 \alpha(17), 5 \alpha A 11 \alpha(17), 5 \beta A \mid 1 \alpha 17 \beta$ and $5 \alpha A 1|\alpha| 7 \beta$.
*For the preparation of this compound, cf. ref. 1, Diagram 16.
** For the preparation of this compound, cf. ref. 1, Diagram 12.
***, $1 \mathrm{DO}(17)$ is the difference between the L_{k} values of the TMS derivatives of the (17)-steroid and its dioxolone derivative.

A		B	
58 A	$1) \mathrm{DO}(17)^{*}$	5ax	1)DO(17)**
D 60	779)	D 62	793)
85		92	
58A3	aDO(17)	SaA	$1 \alpha \mathrm{DO}(17)$
D 63	801)	D 57	2762)
$\triangle \mathrm{DO}$	$=175^{* *}$	\triangle DO) $176{ }^{* * *}$
		--..........-	
87		90	
58 A	1ce(17)	$5 \alpha \mathrm{~A}$	$1 a(17)$
D 42	2626)	D 38	(2586)
WK -__	RD	WK-_-----	RD
85	88	95	91
58A3a11a	5 β A3 $\alpha 11 / \alpha^{17 \beta}$	S α A $3 \times 11 /{ }^{\text {a }}$	S α A 3 al $1 \alpha 17 \beta$
D 251 (2399)	D 467 (2669)	D 229 (2360)	D 441 (2644)
$R_{L}=0.326$	$R_{\text {b }}=0.026$	$\mathrm{R}_{\mathrm{b}}=0.323$	$R_{b}=0.033$

Diagram 2. Synthesis of $5 \beta \mathrm{~A} 3 \alpha 11 \alpha(17), 5 \alpha \mathrm{~A} 3 \alpha 11 \alpha(17), 5 \beta \mathrm{~A} 3 \alpha 11 \alpha 17 \beta$ and $5 \alpha \mathrm{~A} 3 \alpha 11 \alpha 17$.

* For the preparation of this compound, of. ref. 1, Diagram 16.
** For the preparation of this compound, cf. ref. 1, Diagram 12.
*** $1 \mathrm{DO}(17)$ is the difference between L_{R} values of the TMS derivatives of the (17)-compound and its dioxolone derivative.

Diagram 3. Synthesis of $5 \alpha A 3 \beta 11 \alpha(17), 45 A 3 \beta 11 \alpha(17), 5 \alpha A 3 \beta 11 \alpha 17 \beta$ and $\angle 15 A 3 \beta 11 \alpha 17 \beta$.

* For preparation of this compound, cf. ref. I, Table V.
** Obtained from SRC.
*** $\triangle \mathrm{DO}(17)$ is the difference between the L_{n} values of TMS derivatives of the (17)-compound and its dioxolone derivative.

Diagram 4. Synthesis of $5 \beta A 11 \alpha(3,17)$, $5 \alpha A 11 \alpha(3,17), 44 A 11 \alpha(3,17), 5 \beta A 3 \alpha 11 \alpha 17 \beta, 5 \alpha A 3 \beta 11 \alpha 17 \beta$ and $\triangle 4 A 3 \beta 11 \alpha 17 \beta$.

* For sources of this compound, cf. ref. 1, Table V.
** Yield and nature of this product are discussed in text.
*** $\angle 1 \mathrm{DO}(3,17)$ is the difference between the L_{n} values of TMS derivatives of the $(3,17)$-compound and its dioxolone derivative.

Neutralization of RN reduction mixture was carried out with dilute HCl : cf. text.

A	B
5 β P(11)*	5txP(11)**
D,N 184.5 (2266)	D.N 201 (2303)
-	--.
90	92
SpP11 α	SuP11 α
D 211.5 (2325)	D 215 (2332)

Diagram 5. Synthesis of S β P11 α and SaP11 α.
*For preparation of this compound, of. ref. 2, Diagram 4.
** For preparation of this compound, cf. ref, 2, Diagram 5.

A	B	C
5 β P3 β (11)DO(20)*	5 β P3 α (11)DO(20)*	S α P3 β (11)DO(20)*
D 1152 (3061)	D 1132 (3053)	D 1446 (3160)
$R_{\text {b }}=0.700$	$\boldsymbol{R}_{\mathrm{b}}=0.700$	$R_{b}=0.700$
$\mathbf{R N}{ }^{* *}$		
90	91	92
5 β P3 $\beta 11 \alpha \mathrm{DO}(20)$	S β P3 $111 \alpha \mathrm{DO}(20)$	S α P3 $11 \mathrm{laDO}(20)$
D 1066 (3027)	D 1073 (3030)	D 1301 (3115)
ADO(20) $=253 * * *$	$\triangle \mathrm{DO}(20)=240^{* *}$	1DO(20) $=245^{* * *}$
$R_{b}=0.299$	$R_{\mathrm{b}}=0.249$	$R_{\mathrm{b}}=0.279$
HY**		
92	95	90
S β P $3 \beta 11 \alpha(20)$	5pP3al 1 (20)	$5 \alpha P 3 \beta 11 \alpha(20)$
D 608.5 (2784)	D 617 (2790)	D 741 (2870)
$R_{b}=0.246$	$R_{b}=0.191$	$R_{b}=0.201$
WK_-n- RD (2 h)	WK —non (2 h)	
9062	9064	9260
5 $\beta \mathrm{P} 3 \beta 11 \alpha \quad 5 \beta \mathrm{P} 3 \beta 11 \alpha 20 \beta$		$5 \alpha \mathrm{P} 3 \beta 11 \alpha \quad 5 \alpha \mathrm{P} 3 \beta 11 \alpha 20 \beta$
D 374 (2572) D 930 (2968)	D 380 (2579) D 935 (2970)	D 452 (2655) D 1120 (3049)
+ +	+ +	+ +
30	30	30
5 β P3 $\beta 11 \alpha 20 \alpha$	5 β P $3 \alpha 11 \alpha 20 \alpha$	5 α P3 $\beta 11 \alpha 20 \alpha$
D 844 (2926)	D 852 (2930)	D 1022 (3009)

Diagram 6. Synthesis of $5 \beta P 3 \beta 11 \alpha, 5 \beta P 3 \beta 11 \alpha(20), 5 \beta P 3 \beta 1 \mid \alpha 20 \beta, 5 \beta \mathrm{P} 3 \beta 11 \alpha 20 \alpha$ and homologuous $5 \beta P 3 \alpha$ - and 5α P3 β-stcrolds.
*For preparation of this compound, cf. ref. 2, Diagram 7.
** All reactions were carried out with purified material extracted from TLC zones of R_{b} values indicated.
*** $\triangle \mathrm{DO}(20)$ is the difference between L_{R} values of TMS derivatives of $11 \mu(20)$-steroid and its dioxolone derivative.

	A	B	
	$5 \beta \mathrm{P}(11) \mathrm{DO}(3,20) *$	S 6 P(11)DO(3,20)*	A4P(1) DO $(3,20){ }^{\text {? }}$
	D 1740 (3240)	D 1926 (3284)	D 1858 (3269)
	$R_{B}=0.950$	$R_{b}=0.950$	$R_{b}=0.950$
RN**			
	95	95	97
	5 $\mathrm{PP} 11 \alpha \mathrm{CO}(3,20)^{\text {a }}$	SaP11ado $(3,20)$	A4P11cta $(3,20) ?^{80}$
	D 1772 (3248)	D 1816(3259)	D 1816 (3259)
	$\triangle \mathrm{DO}(3,20)=390 * *$	\triangle DO $(3,20)=395 *$	$A D O(3,20)=301^{* *}$
	$R_{b}=0.738$	$R_{b}=0.805$	$R_{b}=0.788$
$\mathrm{HY}^{* *}$	…..................	-.....--...	
	94	97	96
	$5 \beta \mathrm{P} 11 \alpha(3,20)$	5 4 P11 $\alpha(3,20)$	A4P11c(3,20)
	D 721 (2858)	D 732 (2864)	D 908 (2958)
	$R_{\text {b }}=0.577$	$R_{b}=0.591$	$R_{b}=0.446$
	WKRD (2 h)	WK-RD (2 h)	WK\% . ${ }^{\text {\% }}$ (${ }^{\text {h }}$)
	9064	9362	60
		5 α P11 $\alpha \quad 5 \alpha$ P3 $\beta 11 \alpha 20 \beta$	A4P3F11 200β
	D 211.5 (2325) D 935 (2970)	D 215 (2332) D 1120 (3049)	D 1075 (3033)
	+	+	$+$
	35	31	
	5β P3a11 $\alpha 20 \alpha$	SuP3 $\beta 11 \alpha 20 \alpha$	<14P3 $\beta 11 \alpha 20 \alpha$
	D 844 (2926)	D 1022 (3009)	D 976 (2989)

Diagram, 7. Synthesis of $5 \beta \mathrm{P} 11 \alpha(3,20), 5 \alpha \mathrm{P}|1 \alpha(3,20), 44 \mathrm{P}| 1 \alpha(3,20), \angle 14 \mathrm{P} 3 \beta 1 \mid \alpha 20 \beta$ and $14 \mathrm{P} 3 \beta 1 \mid \alpha 20 \alpha$. Products obtained by WK and RD reactions confirm identity of $(\mathbf{3 , 2 0})$-steroids.

* For preparation of this compound, of. ref. 2, Diagram 8.
** All reactions were carried out with purified material extracted from TLC zones of R_{b} value indicated. Product concentrations refer to material extracted from TLC zones of R_{b} value indicated.
** $1 \mathrm{DO}(3,20)$ is the difference of L_{k} values of TMS derivatives of the $1 \mathrm{la}(3,20)$ steroid and its dioxolone derivative.
${ }^{6}$ Abnormal reaction: $c f$. text.
is The identity of this compound is discussed in text.

A	B	
5PP(11)DO(3)*	SaP(11)DO(3)*	
D 547 (2738)	D 603 (2780)	
$R_{b}=1.00$	$R_{\text {b }}=1.00$	
87	95	
5 3 P11\%DO(3)	SaPl1ado(3)	
D 612 (2787)	D 623 (2794)	
$\Delta \mathrm{DO}(3)=137$	$1 \mathrm{DO}(3)=141$	
$R_{b}=0.900$	$R_{n}=0.930$	
98	97	
$5 \beta P \\| 1 /{ }^{(3)}$	$54 \mathrm{P} 11 \alpha(3)$	
D 447 (2650)	D 450 (2653)	
$R_{\text {b }}=0.863$	$R_{n}=0.864$	

Diagram 8. Synthesis of $S \beta P 1 \mid \alpha(3)$ and $5 \alpha P 1 \mid \alpha(3)$. The 2 D reduction of the (3)-steroids were $5 \beta P 3 \alpha 11 \alpha$ and $5 \alpha P 3 \beta 11 \alpha$, respectively, identical to products obtained by a different method (ef. Diagram 6).
*For preparation of this compound cf. ref. 2, Diagram 11.
** This reaction was carried out with purified material extracted from TLC zone of $\boldsymbol{R}_{\mathrm{b}}$ value indicated. Product concentration refers to material extracted from TLC zone of R_{b} value indicated.

A	B
$5 \beta \mathrm{P}(11) \mathrm{DO}(20) *$	5 P P(11)DO(20)*
D,N 572 (2757)	D,N 634 (2802)
$R_{n}=1.00$	$R_{b}=1.00$
95	90
SBP11aDO(20)	SuP11 ${ }^{\text {d }}$ (20)
D 602 (2780)	D 620 (2792)
$4 \mathrm{CO}(20)=245$	ADO(20) $=248$
$R_{b}=0.893$	$R_{b}=0.895$
95	92
$5 \beta \mathrm{P} 11 \alpha(20)$	5 α P11 ${ }^{\text {(20) }}$
D 343 (2535)	D 350 (2544)
$R_{1,}=0.860$	$R_{b}=0.870$
58	58
$5 \beta \mathrm{P} 11 \alpha 20 \beta$	5 α P11 ${ }^{20 \beta}$
D 526 (2721)	D 533 (2727)
$R_{\text {b }}=0.356$	$R_{b}=0.352$
$+$	+
34	
5 $8 \mathrm{P} 11 \alpha 20 \alpha$	5aP11a20 ${ }^{\text {a }}$
D 476 (2677)	D 485 (2686)
$R_{b}=0.482$	$R_{b}=0.455$

Diagram 9. Synthesis of $5 \beta \mathrm{P} 11 \alpha(20), 5 \alpha \mathrm{P} 11 \alpha(20), 5 \beta P 11 \alpha 20 \beta, 5 \alpha \mathrm{P} 11 \alpha 20 \alpha, 5 \beta \mathrm{P} 11 \alpha 20 \alpha$ and $5 \alpha \mathrm{P} 11 \alpha 20 \alpha$.

* For preparation of this compound, cf. ref. 2, Diagram 11.
** This reaction was carried out with purified material extracted from TLC zone of R_{b} value indicated. Product concentration refers to material extracted from TLC zone of R_{t} value indicated.

ADO values as defined by footnote***in the diagrams are given for DO derivatives. Last, the R_{b}, value of products is given when TLC was used as a purification step; R_{b}, is the migration distance relative to that of the dye Sudan blue taken as 1.00 .

Tables II and III list the M_{R} values for the androstane and pregnane series, respectively.

TABLE II
M_{k} VALUES AND SOURCES OF M-STEROIDS OF THE ANDROSTANE SERIES

Steroid		M_{n}	Source
M	Formula		
I	5β A	1887	A 3000
II	$5 \times \mathrm{A}$	1924	A 700
III	S β A3 β	2175	A 3400
IV	SaA3a	2175	A 2150
V	5 β A(3)	2184	Prepared: cf. ref. 1, Diagram 1 and 2
VI	S β A 3α	2193	Prepared; cf. ref. 1, Diagram 2
VII	5aA(3)	2228	A 2650
VIII	$\triangle 4 \mathrm{~A} 3 \beta$	2256	Calculated; from $L_{R} A 4 \mathrm{~A} 3 \beta 17 \beta-G_{R} 17 \beta^{*}$
IX	$\triangle 15 \mathrm{~A} 3 \beta$	2269	A 8290
X	5aA3 β	2279	A 2180
XI	44A(3)	2305	Calculated; from $L_{R} \Delta 4 \mathrm{Al} 17 \beta(3)-G_{R} 17 \beta^{*}$ and L_{R} d4A(3,17)- $G_{R}(17)^{* *}$

[^2]TABLE III
M_{R} VALUES AND SOURCES OF M-STEROIDS OF THE PREGNANE SERIES*

Steroid		M_{k}	Sources
M	Formela		
I	$5 \beta \mathrm{P}$	2113	P 5700
II	$5 \alpha \mathrm{P}$	2150	P 1800
III	5β P3 β	2402	Prepared: WK-5 3 P3 β (20)
IV	$5 a \mathrm{P} 3 \boldsymbol{\alpha}$	2401	Calculated: $M_{n} 5 \alpha A 3 \alpha^{* *}+226^{* * *}=2401$
V	$5 \beta \mathrm{P}(3)$	2412	Calculated: $M_{R} 5$ PA $(3)^{* *}+226^{* * *}=2412$
VI	SPP3a	2421	P 7800
VII	$5 \mu \mathrm{P}(3)$	2453	P 4200
VIII	44P3 β	2483	Calculated: $M_{R} \angle 14 \mathrm{~A} 3 \beta^{* *}+226^{* * *}=2483$
IX	\triangle SP3 β	2497	Q 5350
X	$5 ¢ \mathrm{P} 3 \beta$	2506	P 3450
XI	44P(3)	2531	Calculated; $M_{R} \triangle 4 \mathrm{~A}(3)^{* *}+226^{* * *}=2531$

* Cf. ref. 1, Table II, and ref. 2, Table IV.
** For M_{R} values, cf. ref. 1 , Table I.
*** Cf. Ref. 1, eqn. 17.

Tables IV - X show the corrected retention times, $t^{\prime}{ }_{N R}$, the L_{R}, and G_{R} values, and the sources of steroids belonging, respectively, to groups All α, All $\alpha(17)$, $\mathrm{A}|1 \alpha 17 \beta, \mathrm{P} 11 \alpha, \mathrm{P}| 1 \alpha(17), \mathrm{P}|1 \alpha(20), \mathrm{P}| \mid \alpha 20 \beta$, and $\mathrm{P} \mid 1 \alpha 20 \alpha$. The G_{R} values were calculated from

$$
\begin{equation*}
G_{R}=L_{R}-M_{R} \tag{eqn.9inref.1}
\end{equation*}
$$

where M_{R} is taken from Table II or III.

TABLE IV
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP Alla

Steroid		$t^{\prime} N R$	L_{R}	$G_{B}{ }^{*}$	Source
M	Formula				
1	5 $\mathrm{A}_{\text {Al1 }}$ a	140	2146	259"*	Prepared: $c f$. Table I
11	$5 \alpha A 11 \alpha$	143	2155	231**	Prepared; cf. Table I
III	5 β A3 $\beta 11 \alpha$	247	2393	218**	Calculated; $L_{R} 5 \beta$ P3 β 11 $\alpha^{* * *}-\angle G_{R}{ }^{5}$
IV	5aA3al1a	229	2360	185***	Prepared; of. Table I
V	58A11a(3)	298	2467	283**	Calculated; $L_{R} 5 \beta$ A $11 \alpha(3,17)^{* * *}-4 G_{R}{ }^{\text {a }}$
VI	58A3a11a	251	2399	206	Prepared; cf. Table I, and Diagram 2
VII	$5 \alpha A 11 \alpha(3)$	296	2471	243**	Calculated; $L_{R} \operatorname{SaA11} \alpha(3,17)^{+* *}-\Delta G_{R}{ }^{\text {d }}$
VIII	$\triangle 4 A 3 \beta 11 \alpha$	287	2458	202	
IX	$\triangle 5 A 3 \beta 11 \alpha$	295	2470	201	Prepared; cf. Diagram 3,B
X	$5 \alpha A 3 \beta 11 \alpha$	300	2477	198	Prepared; cf. Table I and Diagram 3
XI	44A11a(3)	367	2564	259**	Calculated; $L_{R}\left\langle 14 \mathrm{Al} 1 \alpha(3,17)^{* * *}-\left\langle 1 G_{R}{ }^{\text {\% }}\right.\right.$

[^3]TABLE V
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP All $\alpha(17)$

Steroid		$t_{\text {' }}^{\text {N }}$	L_{k}	$G_{R}{ }^{*}$	Source
M	Formula				
1	5 β Al1 α (17)	235	2371	484**	Prepared; cf. Diagram 1,A
II	5aA11 ${ }^{\text {(17) }}$	241	2382	456**	Prepared; cf. Diagram 1,B
III	5 β A3 $\beta 11 \alpha(17)$	417	2621	446**	Calculated; $L_{R} 5 \beta \mathrm{P} 3 \beta 11 \alpha(20)^{* * *}-\lambda G_{R}{ }^{\text {b }}$
IV		386	2586	411***	Prepared: of. Diagram 2,B
V	5 8 A11 $1(3,17)$	494	2693	509**	Prepared; cf. Diagram 4,A
VI	S β A3 $\alpha 11 \alpha(17)$	422	2626	433	Prepared; cf. Diagram 2,A
VII	$5 a A 11 a(3,17)$	498	2697	469**	Prepared: cf. Diagram 4, B
VIII	$\triangle 4 \mathrm{~A} 3 \beta 11 \alpha(17)$	488	2684	428	Calculated; $L_{R}\left\langle 4 \mathrm{~A} 3 \beta 11 \alpha 17 \beta^{* * *}-4 G_{R}{ }^{*}\right.$
IX	45A3F11 ${ }^{\text {(17) }}$	496	2696	427	Prepared; of. Diagram 3, B
X	5aA3p11a(17)	506	2704	425	Prepared; cf. Diagram 3,A
XI	$14 \mathrm{~A} 11 \alpha(3,17)$	616	2790	485**	Prepared; cf. Diagram 4,C
***	Average G_{R}-nor G_{R}-odd steroid. For L_{R} value, $c /$ For $\boldsymbol{C l}_{\boldsymbol{n}}$ valuc,	$\begin{aligned} & \text { approp }=0 \\ & \text { app } \end{aligned}$	A Allc riate XI.	$(17)=$ ble.	

TABLE VI
VALUES OF L_{k} AND G_{k}, AND SOURCES OF STEROIDS OF GROUP A11a17 β

Steroid		inn	L_{R}	$\boldsymbol{G}_{\boldsymbol{R}}{ }^{*}$	Source
M	Formula				
I	5β A11 17%	265	2423	536**	Prepared; cf. Table I and Diagram 1,A
II	Scaill $\alpha 17 \beta$	273	2436	512**	Prepared; of. Table I and Diagram 1,B
III	5 β A $3 \beta 11 a 17 \beta$	475	2677	502**	Calculated: $L_{R} 5 \beta P 3 \beta 11 \alpha 20 \beta^{* * *}-\Delta G_{R}{ }^{\text {g }}$
IV	5 α A $3 \alpha 11 \alpha 17 \beta$	441	2644	469**	Prepared; cf. Diagram 2,B
V		561	2748	564**	Calculated; $L_{R} 5 \beta$ A11 $\alpha(3,17)^{\cdots \prime \prime}+\left\langle G_{R}{ }^{8}\right.$
VI		467	2669	476**	Prepared: cf. Table I and Diagram 2, A
VII	$5 \times 2 \mathrm{Al} 1117 \beta(3)$	565	2752	524**	Calculated; $L_{R} 5 \alpha \mathrm{Al\mid} \alpha(3,17)^{* * *}+\left\langle G_{n}{ }^{*}\right.$
VIII	. 14 A 3 3 $111 \alpha 17 \beta$	548	2739	483	Prepared; $c f$. Diagram 4,C
IX	$\triangle 5 \mathrm{~A} 3 \beta 11 \alpha 17 \beta$	567	2753	484	Prepared; cf. Diagram 3,B
X	5 α A $3 \beta 11 \alpha 17 \beta$	574	2759	480	Prepared; cf. Diagram 3,A
XI	$\triangle 4 A 11 \alpha 17 \beta(3)$	700	2845	540"*	Calculated: L_{R} d4A11 $\alpha(3,17)^{\cdots *}+\Delta G_{R}{ }^{\text {b }}$

\therefore Average G_{R}-normal $=G_{R} \mathrm{~A} 11 \alpha 17 \beta=484.0$.
" G_{n}-add steroid.
** For L_{R} value, cf. appropriate table.
${ }^{1}$ For appropriate ΔG_{R} value, of. Table XI.
In Tables II-IX, under Source, a capital letter followed by four digits is the catalogue No. of Steraloids (Pawling, N.Y., U.S.A.); SRC stands for Steroid Reference Collection (cf: Acknowledgements).

In Table XI, the G_{R} values shown in the forelast column are taken from Tables IV-X, footnote*. Table XI, last column, also shows ΣG_{R} values (cf. footnote **) of multifunctional groups for comparison. ΔG_{R} values listed in Table XI were calculated for pairs of 11α-hydroxysteroids in all possible combinations from

$$
\Delta G_{R}(a, b)=L_{R}(a)-L_{R}(b)
$$

(eqn. 13 in ref. 1)
with $L_{R}(a)>L_{R}(b)$.

TABLE VII
VALUES OF L_{n} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P11 α

Steroid		t'NR	L_{R}	$\boldsymbol{G}_{\boldsymbol{R}}{ }^{*}$	Source
M	Formula				
I	SpP11 α	211.5	2325	212**	Prepared; cf. Diagrams 5 and 7
II	5aP11a	215	2332	182**	Prepared; cf. Diagrams 5 and 7
[I]	$5 \beta \mathrm{P} 3 \beta 11 \alpha$	374	2572	$171{ }^{* *}$	Prepared; cf. Diagram 6
IV	SaP3alla	346	2539	138**	Calculated; $L_{R} 5 \alpha \mathrm{~A} 3 \mu 11 \alpha^{* * *}+\alpha G_{R}{ }^{*}$
V	5 β P11 α (3)	447	2650	229**	Prepared; cf. Diagram 8
VI	5 β P3 311α	380	2579	158	Prepared; cf. Diagram 6
VII	$5 \alpha P 11 \alpha(3)$	450	2653	200**	Prepared: cf. Diagram 8
VIII	44P3 $\beta 11 \alpha$	436	2640	159	Calculated; $L_{R} \triangle 14 \mathrm{P} 3 \beta 1 \mathrm{Ic} 20 \beta^{* * *}-\lambda G_{R}{ }^{\text {\% }}$
IX	$\triangle 5 \mathrm{P} 3 \beta 11 \alpha$	448	2651	154	Calculated; $L_{R} \angle 15 \mathrm{P} 3 \beta 11 \alpha^{20} \beta^{* * *}-\Lambda G_{R}{ }^{*}$
X	$5 \alpha \mathrm{P} 3 \beta 11 \alpha$	452	2655	149**	Prepared; $c f$. Diagram 6 ,
XI	$\triangle 14 \mathrm{Pl} 1 \alpha(3)$	556	2745	214**	Calculated; L_{R} d4P11a(3,20) ${ }^{* *}-\angle G_{R}{ }^{*}$

* Average G_{R}-normal $=G_{R}$ P11a $=155.0$.
** G_{n}-odd steroid.
*** For L_{R} value, $c f$. appropriate table.
${ }^{6}$ For appropriate ΔG_{R} value, cf. Table XI.

TABLE VIII
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP Plld(20)

Steroid		$t_{N R}^{\prime}$	L_{R}	$G_{R}^{* *}$

* Average G_{R}-normal $=G_{R} P 11 \alpha(20)=366.5$.
${ }^{* *} G_{R}$-odd steroid.
*** For L_{R} value, cf. appropriate table.
- For appropriate ΔG_{k} value, $c f$. Table XI.

Table XII shows L_{R} values of steroids of groups $\mathrm{A} 11 \alpha, \mathrm{~A} \mid 1 \alpha(17)$ and $\mathrm{A} 11 \alpha 17 \beta$ calculated from M-corresponding members of groups Pl| $\alpha, \mathrm{P} \mid 1 \alpha 20, \mathrm{P} 11 \alpha 20 \beta$ and P11 $\alpha 20 \alpha$ by using

$$
L_{R}(b)==L_{R}(a)-\Delta G_{R}(a, b)
$$

with $\Delta G_{R}(a, b)$ values taken from Table XI.

TABLE IX
VALUES OF L_{R} AND G_{R}. AND SOURCES OF STEROIDS OF GROUP P1I $\alpha 20 \beta$

Steroid		$8^{\prime}{ }^{\prime}$	L_{R}	$\boldsymbol{G}_{\boldsymbol{R}}{ }^{*}$	Source
M	Formula				
I	5 β P11 220β	526	2721	608**	Prepared; cf. Diagram 9,A
II	$5 \alpha \mathrm{P} 11 \alpha 20 \beta$	533	2727	577**	Prepared; cf. Diagram 9,B
III	$5 \beta \mathrm{P} 3 \beta 11 \alpha 20 \beta$	930	2968	564**	Prepared: cf. Diagram 6,A
IV	SaP3al $1 \alpha 20 \beta$	859	2935	534***	Calculated: $L_{R} 5 \alpha A 3 \alpha 11 \alpha 17 \beta^{* * *}+\triangle G_{R}{ }^{6}$
V	5 β P11 $\alpha 20 \beta$ (3)	1097	3040	626**	Calculated; $L_{R} 5 \beta$ P11 $\alpha(3,20)^{* * *}+\Delta G_{R}{ }^{\text {\% }}$
VI	$5 \beta \mathrm{P} 3 \alpha 11 \alpha 20 \beta$	935	2970	549	Prepared; cf. Diagrams 6,B and 7,A
VII	$5 \alpha \mathrm{P} 11 \alpha 20 \beta$ (3)	1113	3046	593**	Calculated; L_{R} S $\alpha P 11 \alpha(3,20)^{* * *}+\Delta G_{R}{ }^{\text {a }}$
VIII	$\triangle 4 \mathrm{P} 3 \beta 11 \alpha 20 \beta$	1075	3033	550	Prepared; cf. Diagram 7,C
IX	$\triangle 15 P 3 \beta 11 \alpha 20 \beta$	1107	3044	547	Calculated: $L_{R} \triangle 5 A 3 \beta 11 \alpha 17 \beta^{* * *}+\Delta G_{R}{ }^{8}$
X	SáP3ß11a20	1120	3049	543 *	Prepared: cf. Diagrams 6,C and 7,B
XI	$\triangle 4 \mathrm{P} 11 \alpha 20 \beta$ (3)	1380	3140	609**	Calculated; $L_{R} \triangle 4 \mathrm{P} 11 \alpha(3,20)^{* * *}+\Delta G_{R}{ }^{\beta}$

${ }^{*}$ Average G_{R}-normal $=G_{R} P 11 \propto 20 \beta=547.0$.
** G_{R}-odd steroid.
*** For L_{R} value, cf. appropriate table.
${ }^{8}$ For appropriate ΔG_{k} valuc, $c f$. Table XI.
TABLE X
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P11a20a

Steroid		$t ' N R$	L_{R}	$G_{R}{ }^{*}$	Source
M	Formula				
I	5 3 P11 20α	476	2677	564**	Prepared: cf. Diagram 9,A
II	$5 \alpha \mathrm{P} 11 \alpha 20 \alpha$	485	2686	536**	Prepared; cf. Diagram 9,B
III	5 $\beta \mathrm{P} 3 \beta 11 \alpha 20 \alpha$	844	2926	521**	Prepared; cf. Diagram 6,A
IV	5aP3a11a20 ${ }^{\text {a }}$	782	2893	492**	
V	$5 \beta \mathrm{P} 11 \alpha 20 \alpha(3)$	996	2998	586**	Calculated: $L_{R} 5 \beta$ P11 $\alpha 20 \beta(3)^{* * *}-\Delta G_{R}{ }^{\text {\% }}$
VI	5 β P3 $\alpha 11 \alpha 20 \alpha$	852	2930	509	Prepared; $c f$. Diagrams 6,B and 7,A
VII	$5 \alpha \mathrm{P} 11 \alpha 20 \alpha(3)$	1010	3004	551**	Calculated; $L_{R} 5 \alpha \mathrm{P} 11 \alpha 20 \beta(3){ }^{* * *}-\angle 1 G_{k}$
VIII	$\triangle 14 \mathrm{P} 3 \beta 11 \alpha 20 \alpha$	976	2989	506	Prepared: cf. Diagram 7,C
IX	\triangle SP3 $\beta 11 \alpha 20 \alpha$	1005	3002	505	Calculated; $L_{R} \triangle 15 P 3 \beta 11 \alpha 20 \beta^{* * *}-\Delta G_{R}^{*}$
X	$5 \alpha \mathrm{P} 3 \beta 11 \alpha 20 \alpha$	1022	3009	503 *	Prepared: $c f$. Diagrams 6,C and 7,B
XI	44P11 $\alpha 20 \alpha(3)$	1252	3098	567**	Calculated; $L_{R} \Lambda 4 P 1 \mid \alpha 20 \beta(3) * * *-\Delta G_{R}{ }^{*}$

[^4]
DISCUSSION

Reactions

At the onset of the present investigation, the only 11α-hydroxysteroid standards available from commercial and other sources were $5 \alpha \mathrm{P} 11 \alpha(3,20)$ and $44 \mathrm{P} 11 \alpha-$ $(3,20)$ (cf. Table VIII). The RN reduction of 11-ketosteroids, effects of this reaction on other functional groups and structural features, and effects of other reactions on functional groups in the presence of 11α were studied more extensively than has been hitherto reported.
T.ABLE XI
$\angle G_{R}, G_{R}$ AND ΣG_{R} VALUES

Group	$\Delta G_{n}{ }^{*}$							$G_{R}{ }^{* *}$	$\Sigma G_{R}^{* * *}$
	Alla	Alla(17)	Al1a17\%	$P / / \boldsymbol{\alpha}$	P1/C(20)	PJI/ 20β	P11/20a		
Alla	-	226	281	179	391	573	532	202.0	-
Al1a(17)	226	-	55	47	165	347	305	428.0	465.2
Al1 17 17	281	55	-	100	110	291	248	484.0	549.0
Plla	179	47	100	-	213	393	352	155.0	-
Pl1a(20)	391.	165	110	213	-	182	140	366.5	389.0
P11a20 β	573	347	291	393	182	-	42	547.5	508.5
P11 $\alpha 20 \alpha$	532	305	248	352	140	42	-	505.7	535.0

* $A G_{k}$ value for a group combination is average of ΔG_{R} values for M-corresponding pairs of steroids, i.e. the difference of L_{R} values $\Delta G_{n}=L_{R}(a)-L_{R}(b)$ with $L_{R}(a)>L_{R}(b)$.
** G_{R} values are G_{R}-normal values shown in footnote * in Tables IV-X.
*** ΣG_{n} is sum of G_{n}-normal values of groups featuring one component functional group only, e.g. ΣG_{n} All $\alpha(17)=G_{R}$ All $\alpha+G_{n} A(17)$.

Note: $G_{k} \mathrm{~A}(17)=262.7: G_{R} \mathrm{Al} 17 \beta=346.5$ (cf. ref. I, Table XII); $G_{R} \mathbf{P}(20)=234: G_{k} \mathrm{P} 20 \beta$
$=353.5$; $G_{n} \mathrm{P} 2 \mathrm{O} \alpha=380$ (cf. ref. 2, Table XVI).
$R D$. Reduction by sodium borohydride of keto groups proceeded in the presence of 11α in a way very similar to that observed in the presence of (11) or 11β. Thus, (3) was converted to 3β except $5 \beta(3)$ which yielded $5 \beta 3 \alpha$; (17) yielded 17β. In all cases, the yield of the minor stereoisomer was extremely small. RD reduction of $11 \alpha(20)$-steroids yielded two hydroxysteroids, that with the largest $t_{N R}^{\prime}$ value being in the highest proportion ($66: 34$) (cf. Diagrams 6, 7 and 9). From previous observations on the RD reduction of (20) (ref. 2, Table I), the major isomer should be the $11 \alpha 20 \beta$-compound. This was confirmed by the fact that this compound migrated on TLC plates in our system very distinctly behind the minor isomer; it was therefore the more polar, as previously observed for 20β-compounds ${ }^{2}$. This assignment was further confirmed by the results of RN reduction (see below).
$R N$. Because nascent hydrogen generated at the sodium-ethanol interface is rapidly converted to inactive molecular hydrogen, and because bubbles of hydrogen covering the surface hinder the access of ketone molecules to the reaction site, this reaction is rather inefficient as regards the sodium used. From the volume of acetic acid used to neutralize the reaction mixture, about 1000 times the stoichiometric amount of sodium was needed for $85-95 \%$ conversion of ketones. Under present conditions, this is still a small amount of sodium. As an excess considerably over the above requirement did not produce adverse effects, the procedure was simplified by using in all cases involving from 0 to 1 mg of ketone, that amount of sodium which was sufficient for 1 mg . Under these conditions, most of the material balance, i.e. from 5 to 15%, was still unconverted ketone easily separable by TLC. The much higher polarity (slow migration) of 11α-hydroxysteroids as compared with (11)- and 11β-hydroxysteroids always ensured a sharp separation from other products by TLC. Compare, for example, the R_{b} values of homologous 11β - and 11α-pregnane derivatives shown in ref. 2 and Diagrams 5-9 in this article, respectively. TLC bands of 11α-hydroxysteroids were clearly revealed on plates sprayed with phosphomolybdic acid, even in trace amounts.
TABLE XII
L_{R} VALUES OF STEROIDS OF GENERAL FORMULA MAll α, MAll $\alpha(17)$ AND MAl $1 \not \epsilon 1 \beta$ CALCULATED FROM THE L_{R} VALUES OF M-CORRESPONDING STEROIDS OF RELATED GROUPS Pl $1 a, P \| \alpha(20)$, P $1 / \alpha 20 \beta$ AND P $11 \alpha 20 \alpha W I T H$ APPROPRIATE $J G_{R}$ VALUES TAKEN FROM TABLE XI

M	L_{R} MAlla					$L_{\text {R }}$ MAlIa(17)					$L_{R} M A 1 / L 17 \beta$				
	Pl/a	Pl1a(20)	Plla 20β	Pl1a20a	Found ${ }^{\text {t* }}$	Plla	Plla(20)	PIIN20]	P1/a20a	Found**	PIIL	$P 1 / \alpha(20)$	Plla 00	PIIC20a	Found**
$5 \beta \mathrm{~A}$	2146	2144	2148	2145	$\begin{gathered} 2146 \\ (2146) \end{gathered}$	2372	2370	2374	2372	$\begin{gathered} 2371 \\ (2372) \end{gathered}$	2425	2425	2430	2429	$\begin{gathered} 2423 \\ (2427) \end{gathered}$
	2153	2153	2154	2154	$\begin{gathered} 2155 \\ (2154) \end{gathered}$	2379	2379	2380	2384	$\begin{gathered} 2382 \\ (2383) \end{gathered}$	2432	2434	2436	2438	$\begin{gathered} 2436 \\ (2435) \end{gathered}$
5β A3 β	2393*	* 2393	2395	2394	$\begin{gathered} 2393 \\ (2394) \end{gathered}$	2619	$2621{ }^{*}$	2621	2621	$\begin{gathered} 2621 \\ (2621) \end{gathered}$	2672	2674	$2677{ }^{*}$	2678	$\begin{gathered} 2677 \\ (2675) \end{gathered}$
$5 \alpha A 3 \alpha$	2360^{*}	2359	2362	2361	$\begin{gathered} 2360 \\ (2361) \end{gathered}$	2586	2586*	2588	2588	$\begin{gathered} 2586 \\ (2586) \end{gathered}$	2639	2639	2644*	2645	$\begin{gathered} 2644 \\ (2642) \end{gathered}$
5月A(3)	2467	2467	2471	2466	$\begin{gathered} 2471 \\ (2468) \end{gathered}$	2697	2693	2693	2693	$\begin{gathered} 2693 \\ (2694) \end{gathered}$	2750	2748	2749	2750	$\begin{gathered} 2748 \\ (2749) \end{gathered}$
SpA3a	2400	2399	2397	2398	$\begin{gathered} 2399 \\ (2399) \end{gathered}$	2626	2625	2623	2625	$\begin{gathered} 2626 \\ (2625) \end{gathered}$	2679	2680	2679	2682	$2669^{* * *}$ (2680)
$5 \mu A(3)$	2474	2473	2473	2472	$\begin{gathered} 2471 \\ (2473) \end{gathered}$	2700	2699	2699	2699	$\begin{gathered} 2697 \\ (2699) \end{gathered}$	2753	2754	2755	2756	$\begin{gathered} 2752 \\ (2754) \end{gathered}$
$44 \mathrm{~A} 3 \beta$	2461	2460	2460	2457	$\begin{gathered} 2458 \\ (2460) \end{gathered}$	2687	2686	2686	2684	$\begin{gathered} 2684 \\ (2686) \end{gathered}$	2740	2741	2742	2741	$\begin{gathered} 2739 \\ (2741) \end{gathered}$
$\triangle 5 \mathrm{~A} 3 \beta$	2472	2471	2471*	2470	$\begin{gathered} 2470 \\ (2471) \end{gathered}$	2698	2698	2697*	2697	$\begin{gathered} 2696 \\ (2698) \end{gathered}$	2751	2752	2753*	2754	$\begin{gathered} 2753 \\ (2753) \end{gathered}$
$5 \alpha A 3 \beta$	2476	2479	2476	2477	$\begin{gathered} 2477 \\ (2477) \end{gathered}$	2702	2705	2702	2704	$\begin{gathered} 2704 \\ (2704) \end{gathered}$	2755	2760	2758	2761	$\begin{gathered} 2759 \\ (2759) \end{gathered}$
14A(3)	2568	2567	2567	2566	$\begin{gathered} 2564 \\ (2567) \end{gathered}$	2794	2793	2793	2793	$\begin{gathered} 2790 \\ (2793) \end{gathered}$	2845	2848	2849	2850	$\begin{gathered} 2845 \\ (2848) \end{gathered}$

[^5]Table I shows that the reduction of $11-k e t o s t e r o i d s$ of the androstane series proceded uneventfully with the exception of $\triangle 4 \mathrm{~A}$ compounds. The reduction of (3) and (17) proceded in a manner similar to that observed in RD reduction including the absence of effect on $\triangle 15 \mathrm{~A}$. Reduction of $\triangle 4 \mathrm{~A}(3)$-, mainly to $5 c \mathrm{~A} 3 \beta$-, was observed. Some reduction of $\triangle 4 A 3 \beta$ - did occur; it was complicated by the loss of 3β or 17β, or both, resulting in the appearance of several early peaks in GLC chromatograms. However, DO derivatization of $\angle 14 \mathrm{~A}(3)$ - afforded complete protection to the 14 A double bond ($c f$. Diagram 4,C).

A very similar behaviour was observed with corresponding ketones of the pregnane series, including the protective effect of DO derivatization of (3) in 44 P (3)(cf. Diagram 7,C).

RN reduction of (20) led to two stereoisomeric hydroxysteroids whose retention times matched that of 20α - and 20β-isomers obtained by RD reduction. However, the $20 \alpha: 20 \beta$ ratio now was $60: 40$, i.e. it was reversed, as indeed observed by Kirk in the reduction of $5 \alpha \mathrm{P}(20)$ by sodium-ethanol ${ }^{5}$. RN reductions therefore confirmed assignments of 20α - and 20β-isomers described above.

DO. Although DO derivatization was not carried out with 11α-hydroxysteroids, properties of $11 \alpha \mathrm{DO}$ derivatives were observed and $\triangle \mathrm{DO}$ values were recorded. It was obvious that $\angle \mathrm{DO}(3), \triangle \mathrm{DO}(3,17), \triangle \mathrm{DO}(20)$ and $\triangle \mathrm{DO}(3,20)$ values (cf. Diagrams 1-9) were as predictable as their (11) $\triangle D O$ and $11 \beta \Delta D O$ counterparts ${ }^{1,2}$, and as readily distinguishable from each other. Hence, $\triangle \mathrm{DO}$ values afford a means of characterizing 11α-hydroxysteroids and the presence of various other functional groups at positions 3(A or P), 17(A), and 20(P). Furthermore, as corresponding (11) $\triangle D Q, 11 \beta \triangle D O$, and $11 \kappa \triangle D O$ values are numerically distinct, and as $11 \beta^{1,2}$ and 11α (cf. below) are readily converted by chromium trioxide oxidation to (11), RN and RD reduction of DO derivatives can be used independently for the characterization of 11 -substituted steroids.

The $\triangle \mathrm{DO}(3,20)$ value corresponding to $\triangle 4 \mathrm{P} 11 \alpha \mathrm{DO}(3,20)$ (Diagram 7,C) was much lower than expected from that of homologous steroids (Diagram 7,A and B). Whatever the nature of the DO derivative ${ }^{6}$, the hydrolytic product was definitely identified as $\triangle 4 \mathrm{P} 11 \alpha(3,20)$ by its $t^{\prime}{ }_{N R}$ value and RD reduction products. The similar case of $\triangle 4 \mathrm{P} 11 \beta \mathrm{DO}(3,20)$ has been discussed ${ }^{2}$.

The DO derivatives of 11α-hydroxysteroids were very easily hydrolyzed by acid. Their isolation after RN reduction of (11)DO derivatives, required careful neutralization with acetic acid. Use of hydrochloric acid led directly to the free steroid (cf. Diagram 4).
$W^{\prime} K$. The removal of keto groups by the Wolff-Kishner reaction proceded uneventfully in the presence of 11α (cf. Diagrams $2,3,6,7$) except with $44 \mathrm{P} \mid 1 \alpha(3,20)$ (cf. Diagram 7,C) where it was complicated by partial reduction of $\triangle 4 \mathrm{P}$ to $5 \alpha \mathrm{P}$ and $5 \beta P$ and resulted in the appearance of several early, closely spaced peaks in GLC chromatograms.
$O X$. One hour of oxidation by chromium trioxide sufficed to convert $11 a$ quantitatively to (11). This reaction was used routinely to confirm the identity of 11α-hydroxysteroids by converting them to known ketones.

TMS. Derivatization of 11α was often incomplete under conditions previously described ${ }^{1}$, but always complete at $32-35^{\circ}$ (cf. above). The retention-time shifts induced by TMS derivatization are exemplified in the following data where the shift
shown in brackets is expressed in L_{R} units preceded by the appropriate sign: 5 β Al|ce $[+46], 5 \alpha \mathrm{~A} 11 \alpha[-13], 5 \beta \mathrm{~A} 3 \alpha 11 \alpha[+25]$; and $5 \alpha \mathrm{P} 11 \alpha[-32], 5 \beta \mathrm{P} 3 \beta 11 \alpha[-36]$, $5 \beta \mathrm{P} 3 \alpha 11 \alpha[-34], 5 \alpha \mathrm{P} 3 \beta 11 \alpha[+44]$.

Obviously, the shift was unpredictable in direction and extent.
$H Y$. The hydrolyses of TMS and DO derivatives were complete under standard conditions ${ }^{1}$.

In Diagrams 1-9, the data clearly demonstrate the similar behaviour of homologous steroids in $R N$ reductions and of the products in subsequent steps.

G_{R} and ΔG_{R} data

Groups of 11α-hydroxysteroids of the androstane and pregnane series in Tables IV-X display the same pattern of G_{R}-odd steroids except group Allal7 β (Table VI) where $5 \beta A 3 \alpha 11 \alpha 17 \beta$ appears as an extra G_{R}-odd member. While G_{R}-odd steroids are most numerous in the general pattern, the G_{R}-normal status assigned to the $5 \beta 3 \alpha-, \Delta 43 \beta$, $\Delta 53 \beta$-, and $5 \alpha 3 \beta$ - members of each group is justified by all four having approximately the same G_{R} values. In contrast, members to which G_{R}-odd status was assigned have G_{R} values widely scattered about the G_{R}-normal value, all but one ($5 \alpha 3 \alpha$) being higher than this value. In contrast, G_{R}-oddity for groups of 11-keto- and 11β-hydroxysteroids previously reported for the androstane ${ }^{1}$ and pregnane ${ }^{2}$ series was always negative. In fact, the only similarity between the G_{R} patterns of these steroids and that of 11α-hydroxysteroids is the G_{R}-normalcy of $\Delta 53 \beta$ - and $5 \alpha 3 \beta$-members.

A comparison of G_{R}-normal values for multifunctional steroids with the corresponding ΣG_{R} values listed in Table XI again demonstrates that G_{R} values for such groups cannot be predicted from the G_{R}-normal values of component functional groups ${ }^{1,2}$.

Table XII shows $132 L_{R}$ values calculated through the ΔG_{R} method using ΔG_{R} values listed in Table XI. The perfect fit of calculated L_{R} values indicated by * should be disregarded as the corresponding "Found" values taken from Tables IV - VI ($5 \beta \mathrm{~A} 3 \beta$-), or the values from which the values were calculated, Table $\mathbf{X}(5 \alpha \mathrm{P} 3 \beta-$, and $\triangle 5 \mathrm{P} 3 \beta-$), were themselves obtained by the ΔG_{R} method. On the other hand, the poor fit of calculated L_{R} values for $5 \beta A 3 \alpha 11 \alpha 17 \beta$ resulted from this compound having abnormal, excessive oddity just as its $5 \beta A 3 \alpha 11 \beta 17 \beta$ counterpart ${ }^{1}$. Of the remaining calculated L_{R} values, 90% fell within $2 L_{R}$ units and 98% within $3 L_{R}$ units of observed values; only two values had an error in excess of 3 units, yet less than 1% of the retention time. Errors on averages of calculated values never exceeded $3 L_{R}$ units.

These results bring strong additional support to the general validity of a rule previously discussed ${ }^{2}$, i.e. that G_{R}-oddity is quantitatively the same in M -corresponding members of steroid groups which feature the same oddity-inducing functional group. These results again demonstrate the versatility and reliability of L_{R} value calculations based on this key principle ${ }^{1,2}$.

ACKNOWLEDGEMENTS

The technical assistance of Mr. R. D. Cochrane was highly appreciated. We are very grateful to Dr. D. F. Johnson, National Institute of Health, Bethesda, Md., U.S.A., Professor W. Klyne, and Dr. D. N. Kirk of Westfield College, London, Great Britain, for numerous samples from the Steroid Reference Collection.

REFERENCES

1 F. A. Vandenheuvel, J. Chromatogr., 96 (1975) 47.
2 F. A. Vandenheuvel, J. Chromatogr., 103 (1975) 113.
3 F. Sondheimer, O. Mancera, G. Rozenkrantz and C. Djerassi, J. Amer. Chem. Soc., 75 (1953) 1282.

4 H. L. Herzog, M. A. Jernik and E. B. Hershberg, J. Amer. Chem. Soc., 75 (1953) 269.
5 D. N. Kirk and A. Mudd, J. Chem. Soc. C, (1969) 968.
6 J. J. Brown, R, H. Lenhard and S. Bernstein, J. Amer. Chem. Soc., 86 (1964) 2183.

[^0]: * Contribution No. 553 of the Animal Rescarch Institute.

[^1]: * Except in cases involving a 14 A -compound, yields were in the $85-95 \%$ range with a large excess of sodium (cf. text).

[^2]: * Cf. ref. 1, Table X.
 ** Cf. ref. 1, Table IX.

[^3]: * Average G_{R}-normal $=G_{\boldsymbol{n}}$ Alla $=202.0$.
 ${ }^{*}{ }^{*} G_{R}$-odd steroid.
 *** For L_{R} value, $c f$. appropriate table.
 ${ }^{6}$ For appropriate ΔG_{k} value, cf. Table XI.

[^4]: * Average G_{R}-normal $=G_{R} P 11 \alpha 20 \alpha=505.7$.
 ** G_{R}-odd steroid.
 *** For L_{k} value, cf. appropriate table.
 - For appropriate ΔG_{R} value, cf. Table XI.

[^5]: * Good agreement for this value was to be expected (cf. text).
 ** Quantity in brackets under Found is average of calculated values.
 *** Disagreement between found and calculated values is disctssed tn the text.

